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Abstract. We study the general behaviour of the correlation lengthξ(kT , h) for the two-point
correlation function of the local fields in an Ising chain with binary distributed fields. At
zero field it is shown thatξ is the same as the zero-field correlation length for the spin–spin
correlation function. For the field-dominated behaviour ofξ we find an exponent for the power-
law divergence which is smaller than the exponent for the spin–spin correlation length. The
entire behaviour of the correlation length can be described by a single crossover scaling function
involving the new critical exponent.

1. Introduction

Following the discovery [1] of universal scaling behaviour in a simple bifurcation route
to chaos, more and more detailed studies have emphasized the rich, typically multifractal
properties of many simple iterative maps [2]. This development has occurred in parallel
with the description of scaling properties near continuous phase transitions. Here the crucial
understanding of critical behaviour and, in particular, of scaling and universality comes from
the renormalization group [3], which is essentially a map of system parameters occurring
through a length scale change. A particularly challenging class of systems exhibiting
criticality at a continuous phase transition is the class of random spin models, especially the
frustrated ones of which the best known examples are the spin glass [4] and the random-
field models of Ising type [5]. These have been much explored both because of their rich
and sometimes surprising behaviour and because of their relevance to real systems ranging
from physical ones (like dilute transition metal alloys or dilute antiferromagnets in a field)
to biological ones (such as neural networks).

At the most basic level, their analogous scaling behaviours have long provided a link
between the iterative maps and the continuous phase transitions. On the other hand,
multifractal characteristics, common in iterative maps, do not show up in the behaviour of
simple non-random phase transitions wherek-spin correlation functions for differentk are
rather trivially linked by ‘gap scaling’ [6]. Nevertheless, multifractal features do commonly
occur in random systems such as dilute spin systems and other processes on the percolation
network [7]. So it is of interest to investigate the relationship between iterative maps and
random systems. That is one aim of the present paper, where the random-field Ising model
is investigated.

Another reason for attempting to view the random spin systems via an iterative map is
because this can be a very effective way of approaching them. In one dimension (d = 1)
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the non-random Ising model can be trivially solved by using a (multiplication of a) transfer
matrix to achieve the sum over spin configurations involved in its partition function [8].
But even ind = 1 this procedure is very difficult for the random Ising models, where both
a spin configuration sum and a quenched average over randomness is required [9]. An
elegant alternative method is provided by a mapping method, introduced by Ruján et al
[10, 11] and applied by Behnet al [12–15] to one-dimensional Ising spin glass and neural
network models. Here the mapped variable at each stagen of the mapping is a ‘local field’
including the exact fluctuating effects of all spins to the left of siten in the actual spin
chain. This technique is used on the random-field Ising chain (RFI) in the present paper.
There are indications that in the limit of zero temperatureT this method is related to an
algorithm [16] for constructing theRFI ground state.

For most experiments, spin–spin correlation functions are most relevant, since they are
measured by standard probes such as linear response to an adiabatic or isothermal applied
field, or scattering of neutrons or electromagnetic waves [17]. Nevertheless, other correlation
functions can exhibit new features and may occur naturally in iterative maps. An example
is the correlation between the value of a mapped variable at different stages of the mapping.
This paper focuses on such a correlation, corresponding to that between ‘local fields’ at
different stages of theRFI mapping or, equivalent, between local fields at different sites in
the random field Ising chain.

It is found that the associated scaling behaviour, which occurs at low field and low
temperature, can be characterized by a crossover form involving an apparently new critical
exponent.

The layout of the paper is as follows. In section 2 we describe the model and the
mapping which leads to the two-point correlation function. In section 3 the numerical
results for the correlation lengths are presented and compared with the analytical forms.
Finally, we summarize our results in section 4.

2. Model

We consider a finite chain ofN spins with ferromagnetic exchange (J > 0) in a quenched
random field{hn}

H = −J

N∑
n=1

snsn+1 −
N∑

n=1

hnsn (1)

with sn = ±1 andsN+1 = 0. The random fieldshn with zero mean value are independent
binary random variables, each taking the two valueshσ = σh, σ = ±1, with the same
probability 1

2. Because of the Markov character, the exact calculation of the partition
function for (1) can be reduced to the problem ofone spin in an effective local random
field xn [10, 11]

ZN =
∑
{sn}

exp

[
β

(N−1∑
n=1

J snsn+1 +
N∑

n=1

hnsn

)]
=

∑
sN

exp

[
β

(
xNsN +

N−1∑
n=1

B(xn)

)]
(2)

by summing configurations starting with the left-most spin in the chain.β is the inverse
temperature 1/kT andB(xn) is the function

B(xn) = 1

2β
ln [coshβ(xn + J ) coshβ(xn − J )] . (3)



Scaling behaviour in the random field Ising chain 3497

The effective local random fieldxn acting on spinsn is governed by the discrete stochastic
mapping [11]

x0 = 0 xn = hn + A(xn−1) ≡ f (hn, xn−1) n = 1, . . . , N (4)

where

A(xn) = 1

2β
ln

coshβ(xn + J )

coshβ(xn − J )
. (5)

This new local fieldxn is a superposition of the (external) fieldhn and a fieldA(xn−1)

which contains the effect of all spins left ofn.
The corresponding probability densitypn(x) for the mapping (4) is governed by the

Frobenius–Perron equation. Its fixed point gives the invariant measure of the local field
xn. For non-zero temperatureA(x) is infinitely differentiable where|∂xA(x)| < 1 holds.
Therefore the mapping (4) isnon-chaoticbut generates for a discrete driving process an
uncountablenumber of states and a fractal attractor. SinceA(x) is nonlinear, the mapping
has infinitely many scales and consequently the invariant measure forms amultifractal. Its
support is either of the topology of a Cantor set or a continuum, depending on the physical
parameters [12–14, 18–21]. Particularly the scaling behaviour of the invariant measure at
the boundaries of the support shows a notable richness [15].

These drastic changes of the measure and its support are characterized by the behaviour
of the generalized fractal dimensionDq [22]. They show as a function of the physical
parameters continuous as well as discontinuous transitions which are similar to those of
order parameters in phase transitions [12, 13, 18–21]. The multifractal spectrum is closely
related to the fluctuations of the free energy of a finite chain [21] and transfers directly to
a multifractal distribution of the local magnetizationmn = tanh[xn + A(x ′

n+1)], wherex ′
n

contains the effect of all spins right ofn.
A different approach is the study of random Ising models by their correlation functions.

The few available exact results concern the two-pointconnectedcorrelation function for
a diluted symmetric exponential distribution at any temperature [23, 24] or the binary
distribution at any temperature [25] and zero temperature [26, 27], respectively.

In this paper we focus on the general behaviour of the correlation lengthξ(kT , h) for
the two-point correlation function of the local fields:

〈x1+sx1〉 = 2−s
∑
σs

∑
σs−1

· · ·
∑
σ1

f (hσs
, f (hσs−1, . . . , f (hσ1, x1) · · ·))x1 . (6)

The points are separated by a fixed numbers of iterations, which is equivalent to a fixed
spatial separation in the original system (1).〈· · ·〉 means an average over all configurations
of {h1, . . . , hs}.

From scaling arguments [6] it is expected that the correlations have an asymptotic decay
of the form

〈x1+sx1〉 ∼ s1−η exp

( −s

ξ(kT , h)

)
(7)

for large enoughs providedkT andh are such thatξ is large. η is an exponent related to
the scaling dimension of the ‘operator’x. A check by means of the log〈x1+sx1〉–logs plot
suggests that for all the fields the asymptotic behaviour is already attained fors & 5 for
all non-zero temperatures considered, ands & 20 for zero temperature, respectively, and
that η = 1. Therefore forkT 6= 0 we are able to obtain the scaling behaviour calculating
〈x1+sx1〉 as an average overall possible paths for each generations with 5 6 s 6 19. For
kT = 0 we average on the basis of 106 randomly chosen paths for each generations with
20 6 s 6 70.
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3. Results

d = 1 is the lower critical dimension of the random-field Ising model [28]. So, in one
dimension criticality occurs near the zero field-zero temperature point. That is, for small
enoughh, kT the correlation lengthξ is expected to be large. Depending on the relative
sizes ofh and kT it should cross over between afield dominated (kT = 0) form and a
temperaturedominated (h = 0) one. In zero field the correlation (7) can be evaluated
exactly, since putting

xn = 1

2β
ln (tanh2n) 8 = arctanh

(
e−2βJ

)
(8)

the map (4), (5) becomes

2n+1 = 2n + 8. (9)

It is then straightforward to show that forh = 0 the larges form (7) applies withη = 1
and

ξ(kT , 0) = 1

28
=

[
− ln

(
tanh

J

kT

)]−1

. (10)

It is interesting that this is the same, forall temperatures, as the correlation length occurring
in the usual spin–spin correlation function〈sn+1s1〉 of the zero-field Ising chain [8]. This
correlation length shows the following behaviour in the scaling regime of low temperature

ξ(kT , 0) ∼ 1

2
exp

(
2J

kT

)
. (11)

From the domain scaling theory it is expected [5] that atkT = 0 and small non-zero
h the field dominated correlation length for the correlation function〈sn+1s1〉 of the random
field Ising chain is

ξD(0, h) ∼ h−2 (12)

consistent with the result of Grinstein and Mukamel [23]. For the corresponding correlation
length ξ(0, h) for 〈x1+sx1〉, we would also expect (atkT = 0 and smallh) a power-law
divergence

ξ(0, h) ∼ h−α (13)

(since there is no known reason, such as marginal dimensionality, orxs a marginal operator,
to expect otherwise). However, even for smallh we have found no reason to expect the
same exponent as in (12), so the present work can be used to test whetherα is 2.

If h and kT are both sufficiently small, thenξ is large, and in this regime, based on
equations (10), (11) and (13) the general behaviour of the correlation length should be
described by a crossover scaling functiong

ξ ∼ 1

2
exp

(
2J

kT

)
g

[
hα exp

(
2J

kT

)]
(14)

such that

g(y) =


constant fory → 0
constant

y
for y → ∞ .

(15)

For valueskT /J < 10 figure 1 shows the exact result for−1/ξ(kT , 0) and the numerical
results calculated forh = 0.005. The agreement is fairly good as long as the correlation
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Figure 1. Scaling behaviour of the
correlation length in the temperature
dominated case (h = 0) with J =
1. The analytical result (10) for−1/ξ

against the temperaturekT is denoted
by the full curve. The numerical results
for h = 0.005 are indicated by circles.

Figure 2. Correlation lengthξ in the temperature
dominated case (h = 0) for low temperatures and
J = 1. The full curve shows the analytical result (11)
whereas the circles indicate the numerical results for
h = 0.001.

length is larger than∼1/2 (kT /J . 7). The agreement for the smaller correlation lengths
is remarkable since (10) was derived under the assumption of largeξ . In figure 2 the
results for the low-temperature behaviour of (10) are shown. The calculated values ofξ for
h = 0.001 fit very well with (11) over the entire low-temperature range.

The results for the field-dominated case (kT = 0) are shown in table 1 and drawn in
figure 3. The ln 1/ξ–lnh plot strongly confirms the power law divergence (13). For the fit
we confine ourselves to the four left-most points since we are interested in theasymptotic
scaling behaviour for non-zeroh. From it we determineα = 1.877± 0.008 by a least-
mean-square fit.

The general behaviour of the correlation length is shown in figure 4. The crossover
behaviour from the temperature-controlled one (ln[exp(2J/kT )/2ξ ] = 0) to the field-
controlled one (ln[exp(2J/kT )/2ξ ] increasing linearly) is evidently visible. As expected,
the entire behaviour of the correlation length can be described by a single function. The fit
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Table 1. The mean value of the inverse correlation length 1/ξ in the field dominated case
(kT = 0) with J = 1 for different values ofh

h 1/ξ

0.09 0.009 20± 0.000 12
0.11 0.013 41± 0.000 08
0.13 0.018 36± 0.000 05
0.16 0.027 19± 0.000 06
0.19 0.037 20± 0.000 06
0.21 0.044 40± 0.000 12
0.23 0.052 37± 0.000 11
0.26 0.065 19± 0.000 19
0.29 0.079 63± 0.000 46

Figure 3. Scaling behaviour of the correlation length in the field dominated case (kT = 0) with
J = 1. The numerical results of 1/ξ for 0.09 6 h 6 0.29 are shown by circles. The full line
gives an exponentα = 1.877 which fits best for the four left-most points in order to examine
the asymptotic scaling behaviour for small non-zeroh. For comparison, the broken line shows
the fit with α = 2.

gives

ln

[
1

g(y)

]
∼ ln

[
exp(2J/kT )

2ξ

]
= ln[1 + 0.07 exp(2.1z − 0.25z2) + 0.42 exp(z)] (16)

wherez = ln y = ln[hα exp(2J/kT )] and the good data collapse shown in the figure was
obtained usingα = 1.877. Our fit function fulfils (15) since the two interesting limits yield

g(y) ∼


1 for y → 0, i.e. z → −∞
1

exp(z)
= 1

y
for y → +∞, i.e. z → +∞ (17)
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Figure 4. The overall scaling behaviour of the correlation length. The numerical results
(◦) with J = 1 show a crossover behaviour from the temperature-controlled behaviour
(ln[exp(2J/kT )/2ξ ] = 0) to the field-controlled one (ln[exp(2J/kT )/2ξ ] increasing linearly).
The calculations were made forh andkT used in figure 2 and for small enoughh andkT for
which ξ(h, kT ) > 10 holds. The entire data set is fitted with ln[1+ 0.07 exp(2.1z − 0.25z2) +
0.42 exp(z)] wherez = ln y = ln[hα exp(2J/kT )] with α = 1.877 (full curve).

4. Discussion

In this paper the general behaviour of the correlation lengthξ(kT , h) in the one-dimensional
Ising model with binary distributed magnetic field are calculated. The calculations are based
on the discrete stochastic mapping (4), (5) for the effective local field acting on the spin at
site n.

The correlation lengthξ for the two-point local field correlation function has been
calculated analytically at zero field, and shown to be the same as the zero-field correlation
length for the spin–spin correlation function.

The picture is different for the opposite situation of a field-dominated behaviour
(kT = 0) of the correlation length. Our exponent ofα = 1.877 is clearly smaller than the
exponentαD = 2 for the spin–spin correlation length [5]. The choice of a new exponent
is sustained by the smallness of the errors for 1/ξ (see table 1). Therefore statistical errors
can be ruled out as the reason for the difference.α = 2 gives a distinctly inferior fit to the
numerical data compared toα = 1.877 (see figure 3).

The different features of the fluctuation variablessn and xn must cause the difference
in the exponents for the power law divergence. From the mapping,xn has a distribution
for small non-zerotemperatures which is characterized by a multifractal, while multifractal
features have not so far been identified in the distribution forsn. For zero temperatures,
xn has a distribution which consists of a countable number ofδ-functions [13]. During
the transition from non-zero to zero temperaturesxn undergoes a qualitative change in its
distribution, whereas the field-controlled behaviour in the correlation length does not show
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any change (cf the rightmost part of figure 4 and (17)).
When multifractal features occur, simple relationships (such as gap scaling) between

the scaling behaviour of different correlation functions would not be expected [7], and this
may be the reason whyα 6= 2. This question is worthy of further consideration.
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